3={0,1,2}
由此,不断的类推下去。
那么,就可以最终推论出全体自然数n,便是以0到n-1,共计拥有n个元素的集合。
即:n={0,1,2,3……n-1}
而全体自然数即便进行过再定义后,再结合【子集】关系,也仍然会是一个良序集。
因为,其符合【序数理论】的种种条件。
到了这一步后,就可以考虑在全体自然数集的【末尾】,再加入一个元素了。
然后……等一等!
有没有发现一个规律,关于构造自然数的规律。
即是每一个自然数在被构造出来后,其实都是将前一个自然数【自身】,作为一个元素,加入到其【自身】的集合之中。
想一想,1、2、3、4……是不是都是如此。
是的,确实如此。
所以,现在如果将全体自然数集合本身,作为一个元素,加入到自然数集合中,会得到什么呢?
试一试。
很多时候,人们都惯常性的将自然数集合,记作n。
不过,在序数理论体系中,全体自然数集合,则通常会被记作为w。
因此,w就可以={0,1,2,3……n}
那么,如果将w加入到自身集合中,即是:{0,1,2,3……n……w}
所以这个集合,良序吗?
是的,它是良序集,货真价实。
因为在其之中的任何两个元素,都可以进行大小比较。
并且w之中,包含了所有其他元素,其他所有元素也都是w的子集。
所以w在排序之时,就应该排在最后。
毫无疑义。
总之,〖在全体自然数末尾添加一个元素〗这一操作,此刻终于成功了。
对于w的突破,也终于成功了。
而通过这种操作所得到的新超限序数,也就是前面的那个{0,1,2,3……n-1……w}。
即是,w+1。
注意,这里的+1不是加了一个自然数1,那是纯纯的两码事。
同时w,也不能简单的用加减乘除四则运算来折腾,那是大错特错。
因为集合序数的和,是在两个良序集的无交并上定义一定良序关系后所定义的。
另外,在得到w+1这一无法与自然数集建立一一对应这种次序关系的更大的超限序数后。
便可以通过复现先前w加入自身得到w+1的操作,来得到w+2。
再将w+2加入自身,来得到w+3。
不断重复这种操作,便可以得到w+4、w+5、w+6、w+7……
以此类推,最终在进行了无穷多次这类操作后,就可以到达这条无穷复无穷之路的极限——w+w。
也就是,w·2。
w,可称之为第一重无限,w·2则可称为第二重无限。
二者的差距从某种意义上来说,用单薄的‘无穷’二字都不足以形容。